Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114108, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615321

RESUMO

TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state. Similar to other allosteric inhibitors of TRPM7, NS8593 and VER155008, binding of CCT is accompanied by displacement of a lipid that resides in the VL site in the apo condition. Moreover, we demonstrate the principal role of several residues in the VL site enabling CCT to inhibit TRPM7 without impacting the homologous TRPM6 channel. Hence, our results uncover the central role of the VL site for the selective interaction of TRPM7 with small molecules that can be explored in future drug design.


Assuntos
1-Naftilamina/análogos & derivados , Antineoplásicos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células HEK293 , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligação Proteica , Microscopia Crioeletrônica
3.
Channels (Austin) ; 17(1): 2266669, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838981

RESUMO

TRPV6, a representative of the vanilloid subfamily of TRP channels, serves as the principal calcium uptake channel in the gut. Dysregulation of TRPV6 results in disturbed calcium homeostasis leading to a variety of human diseases, including many forms of cancer. Inhibitors of this oncochannel are therefore particularly needed. In this review, we provide an overview of recent advances in structural pharmacology that uncovered the molecular mechanisms of TRPV6 inhibition by a variety of small molecules, including synthetic and natural, plant-derived compounds as well as some prospective and clinically approved drugs.


Assuntos
Cálcio , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Estudos Prospectivos , Transporte Biológico , Canais de Cálcio/metabolismo
4.
Nat Commun ; 14(1): 4630, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532722

RESUMO

The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.


Assuntos
Cálcio , Canabinoides , Humanos , Cálcio/metabolismo , Microscopia Crioeletrônica , Canabinoides/farmacologia , Sítios de Ligação , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/metabolismo
5.
Nat Commun ; 14(1): 3733, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353478

RESUMO

Transient receptor potential (TRP) channel TRPV4 is a polymodal cellular sensor that responds to moderate heat, cell swelling, shear stress, and small-molecule ligands. It is involved in thermogenesis, regulation of vascular tone, bone homeostasis, renal and pulmonary functions. TRPV4 is implicated in neuromuscular and skeletal disorders, pulmonary edema, and cancers, and represents an important drug target. The cytoskeletal remodeling GTPase RhoA has been shown to suppress TRPV4 activity. Here, we present a structure of the human TRPV4-RhoA complex that shows RhoA interaction with the membrane-facing surface of the TRPV4 ankyrin repeat domains. The contact interface reveals residues that are mutated in neuropathies, providing an insight into the disease pathogenesis. We also identify the binding sites of the TRPV4 agonist 4α-PDD and the inhibitor HC-067047 at the base of the S1-S4 bundle, and show that agonist binding leads to pore opening, while channel inhibition involves a π-to-α transition in the pore-forming helix S6. Our structures elucidate the interaction interface between hTRPV4 and RhoA, as well as residues at this interface that are involved in TRPV4 disease-causing mutations. They shed light on TRPV4 activation and inhibition and provide a template for the design of future therapeutics for treatment of TRPV4-related diseases.


Assuntos
Canais de Cátion TRPV , Proteína rhoA de Ligação ao GTP , Humanos , Repetição de Anquirina , Canais de Cátion TRPV/química , Proteína rhoA de Ligação ao GTP/química
6.
Nat Commun ; 14(1): 2639, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156763

RESUMO

The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.


Assuntos
Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Diferenciação Celular
7.
Nat Commun ; 14(1): 2659, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160865

RESUMO

Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.


Assuntos
Genisteína , Fitoestrógenos , Humanos , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Cálcio , Eletrofisiologia Cardíaca , Proliferação de Células , Canais de Cálcio , Canais de Cátion TRPV
8.
Nat Commun ; 14(1): 2451, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117175

RESUMO

Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.


Assuntos
Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cátion TRPV/metabolismo , Microscopia Crioeletrônica , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico
9.
Cell Calcium ; 105: 102607, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636151

RESUMO

Transient receptor potential (TRP) channels are polymodal sensors that play critical roles in various physiological processes in living organisms. These cation-permeable channels respond to a variety of physical and chemical stimuli, including cold and hot temperatures, acidic pH, and mechanical stress, often determining a sensory frontier of defense against hostile environments. Vanilloid (V) subfamily is the most studied category of TRP channels that includes six closely related members: highly calcium-selective TRPV5-6 and non-selective TRPV1-4. A remarkable feature of TRPV1-4 is their ability to sense heat, which makes them temperature-sensitive TRP channels or thermo-TRPs. TRPV channels are associated with a multitude of human diseases, including cancers, chronic pain, cardiovascular, neurological and nociceptive disorders. Despite the great clinical interest, pharmacology of TRPV channels remains largely undeveloped because of insufficient knowledge about the mechanisms of their regulation. For instance, activation of TRPV channels by small molecules or heat remains poorly understood. Numerous identified TRPV channel agonists, while effective in physiological experiments, appear limited in their ability to act in the conditions of structural biology experiments. In this regard, the recent study by Pumroy et al. [1] makes a significant contribution towards our understanding of TRPV2 structural dynamics that leads to opening of this channel in physiological conditions.


Assuntos
Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Cálcio , Temperatura Alta , Humanos , Canais de Cátion TRPV/química , Temperatura
10.
Nat Commun ; 13(1): 2795, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589741

RESUMO

Skin diseases are common human illnesses that occur in all cultures, at all ages, and affect between 30% and 70% of individuals globally. TRPV3 is a cation-permeable TRP channel predominantly expressed in skin keratinocytes, implicated in cutaneous sensation and associated with numerous skin diseases. TRPV3 is inhibited by the local anesthetic dyclonine, traditionally used for topical applications to relieve pain and itch. However, the structural basis of TRPV3 inhibition by dyclonine has remained elusive. Here we present a cryo-EM structure of a TRPV3-dyclonine complex that reveals binding of the inhibitor in the portals which connect the membrane environment surrounding the channel to the central cavity of the channel pore. We propose a mechanism of TRPV3 inhibition in which dyclonine molecules stick out into the channel pore, creating a barrier for ion conductance. The allosteric binding site of dyclonine can serve as a template for the design of new TRPV3-targeting drugs.


Assuntos
Queratinócitos , Canais de Cátion TRPV , Anestésicos Locais , Humanos , Queratinócitos/metabolismo , Propiofenonas , Pele/metabolismo , Canais de Cátion TRPV/metabolismo
11.
Nat Commun ; 12(1): 6284, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725357

RESUMO

TRPV6 is a calcium-selective ion channel implicated in epithelial Ca2+ uptake. TRPV6 inhibitors are needed for the treatment of a broad range of diseases associated with disturbed calcium homeostasis, including cancers. Here we combine cryo-EM, calcium imaging, and mutagenesis to explore molecular bases of human TRPV6 inhibition by the antifungal drug econazole and the universal ion channel blocker ruthenium red (RR). Econazole binds to an allosteric site at the channel's periphery, where it replaces a lipid. In contrast, RR inhibits TRPV6 by binding in the middle of the ion channel's selectivity filter and plugging its pore like a bottle cork. Despite different binding site locations, both inhibitors induce similar conformational changes in the channel resulting in closure of the gate formed by S6 helices bundle crossing. The uncovered molecular mechanisms of TRPV6 inhibition can guide the design of a new generation of clinically useful inhibitors.


Assuntos
Antifúngicos/química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio/química , Econazol/química , Rutênio Vermelho/química , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química , Sítios de Ligação , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Humanos , Modelos Moleculares , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
12.
EMBO Rep ; 22(11): e53233, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34472684

RESUMO

TRPV3, a representative of the vanilloid subfamily of TRP channels, is predominantly expressed in skin keratinocytes and has been implicated in cutaneous sensation and associated with numerous skin pathologies and cancers. TRPV3 is inhibited by the natural coumarin derivative osthole, an active ingredient of Cnidium monnieri, which has been used in traditional Chinese medicine for the treatment of a variety of human diseases. However, the structural basis of channel inhibition by osthole has remained elusive. Here we present cryo-EM structures of TRPV3 in complex with osthole, revealing two types of osthole binding sites in the transmembrane region of TRPV3 that coincide with the binding sites of agonist 2-APB. Osthole binding converts the channel pore into a previously unidentified conformation with a widely open selectivity filter and closed intracellular gate. Our structures provide insight into competitive inhibition of TRPV3 by osthole and can serve as a template for the design of osthole chemistry-inspired drugs targeting TRPV3-associated diseases.


Assuntos
Cumarínicos , Canais de Cátion TRPV , Cumarínicos/metabolismo , Cumarínicos/farmacologia , Humanos , Queratinócitos/metabolismo , Pele/metabolismo , Canais de Cátion TRPV/metabolismo
13.
Nat Struct Mol Biol ; 28(7): 564-572, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239124

RESUMO

Numerous physiological functions rely on distinguishing temperature through temperature-sensitive transient receptor potential channels (thermo-TRPs). Although the function of thermo-TRPs has been studied extensively, structural determination of their heat- and cold-activated states has remained a challenge. Here, we present cryo-EM structures of the nanodisc-reconstituted wild-type mouse TRPV3 in three distinct conformations: closed, heat-activated sensitized and open states. The heat-induced transformations of TRPV3 are accompanied by changes in the secondary structure of the S2-S3 linker and the N and C termini and represent a conformational wave that links these parts of the protein to a lipid occupying the vanilloid binding site. State-dependent differences in the behavior of bound lipids suggest their active role in thermo-TRP temperature-dependent gating. Our structural data, supported by physiological recordings and molecular dynamics simulations, provide an insight for understanding the molecular mechanism of temperature sensing.


Assuntos
Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Animais , Linhagem Celular , Temperatura Baixa , Microscopia Crioeletrônica , Células HEK293 , Temperatura Alta , Humanos , Ativação do Canal Iônico , Lipídeos/química , Camundongos , Ligação Proteica/fisiologia , Conformação Proteica , Termodinâmica
14.
Methods Enzymol ; 652: 31-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059288

RESUMO

The transient receptor potential vanilloid-superfamily member 3 (TRPV3) channel is implicated in a variety of physiological processes, including temperature sensing, nociception and itch, maintenance of the skin barrier, wound healing, hair growth, and embryonic development. TRPV3 is also associated with various skin diseases, including Olmsted syndrome, atopic dermatitis, and rosacea. Studies of TRPV3 are of fundamental importance for structural pharmacology aimed at the design of drugs targeting this channel and for understanding the molecular basis of temperature sensing. Here we describe a detailed protocol for expression and purification of chemically pure and stable TRPV3 protein that is suitable for structural and functional characterization of this channel, in particular for cryo-EM sample preparation and high-resolution 3D reconstruction.


Assuntos
Canais de Cátion TRPV , Microscopia Crioeletrônica , Canais de Cátion TRPV/genética
15.
Nat Commun ; 12(1): 2154, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846324

RESUMO

Transient receptor potential (TRP) channels are polymodal molecular sensors involved in numerous physiological processes and implicated in a variety of human diseases. Several structures of the founding member of the TRP channel family, TRPV1, are available, all of which were determined for the protein missing the N- and C-termini and the extracellular S5-P-loop. Here, we present structures of the full-length thirteen-lined ground squirrel TRPV1 solved by cryo-EM. Our structures resolve the extracellular cap domain formed by the S5-P-loops and the C-terminus that wraps around the three-stranded ß-sheet connecting elements of the TRPV1 intracellular skirt. The cap domain forms a dome above the pore's extracellular entrance, with four portals leading to the ion conductance pathway. Deletion of the cap increases the TRPV1 average conductance, reduces the open probability and affects ion selectivity. Our data show that both the termini and the cap domain are critical determinants of TRPV1 function.


Assuntos
Espaço Extracelular/química , Ativação do Canal Iônico , Canais de Cátion TRPV/metabolismo , Animais , Células HEK293 , Humanos , Ligantes , Lipídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Sciuridae , Canais de Cátion TRPV/química
16.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246965

RESUMO

Epithelial calcium channel TRPV6 plays vital roles in calcium homeostasis, and its dysregulation is implicated in multifactorial diseases, including cancers. Here, we study the molecular mechanism of selective nanomolar-affinity TRPV6 inhibition by (4-phenylcyclohexyl)piperazine derivatives (PCHPDs). We use x-ray crystallography and cryo-electron microscopy to solve the inhibitor-bound structures of TRPV6 and identify two types of inhibitor binding sites in the transmembrane region: (i) modulatory sites between the S1-S4 and pore domains normally occupied by lipids and (ii) the main site in the ion channel pore. Our structural data combined with mutagenesis, functional and computational approaches suggest that PCHPDs plug the open pore of TRPV6 and convert the channel into a nonconducting state, mimicking the action of calmodulin, which causes inactivation of TRPV6 channels under physiological conditions. This mechanism of inhibition explains the high selectivity and potency of PCHPDs and opens up unexplored avenues for the design of future-generation biomimetic drugs.


Assuntos
Canais de Cálcio , Canais de Cátion TRPV , Cálcio/metabolismo , Canais de Cálcio/química , Calmodulina/metabolismo , Microscopia Crioeletrônica , Humanos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
17.
Structure ; 28(6): 625-634.e6, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348749

RESUMO

The small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug-binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that chloramphenicol sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate AcrB activity. This mode of regulation by a small protein and lipid may occur for other membrane proteins.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Transporte/genética , Cloranfenicol/farmacologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
19.
Nat Rev Microbiol ; 16(9): 577, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022105

RESUMO

In the version of this Review originally published, the author contributions of co-author Arthur Neuberger were incorrectly listed. The author contributions should have appeared as 'D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission'. This has now been corrected in all versions of the Review. The authors apologize to readers for this error.

20.
Nat Rev Microbiol ; 16(9): 523-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002505

RESUMO

Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...